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In this study the mechanical properties (reduction of area, Sy, tensile strength, Ry, yield strength, R, and elongation, 4) of EN AW 7075
aluminum alloy obtained by electromagnetic casting were investigated at different operating parameters: frequency (), field strength (7) and
current intensity (/). The predictive mathematical models using Response Surface Methodology, with second order polynomial (SOP) regression
models, and Artificial Neural Network model (ANN), were afterwards compared to obtained experimental results. Analysis of variance and post-
hoc Tukey’s HSD test at 95% confidence limit (“honestly significant differences”) have been utilised to show significant differences between
various samples. SOP models showed good prediction capabilities, with high coefficients of determination (%), 0.531-0.977, while ANN model
performed even better prediction accuracy: 0.800—0.992. The optimal samples were chosen depending on mechanical properties of the product
(So = 50.49 mm?, R, = 405.75Nmm 2, R, = 302.49Nmm>2 4 = 6.86%), using optimal operating parameters (¥ = 30Hz, /=250A, T'=

18 x 1073 At). [doi:10.2320/matertrans.M2015058]
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1. Introduction

Electromagnetic casting (EMC) is the technological
process developed by introducing the magneto hydrodynam-
ics into the casting process, providing the opportunity which
has never been achieved by conventional casting process.
Electromagnetic forces, arising from the interaction of Eddy
currents induced in the metal by inductor magnetic field,
stimulate an increased flow of the fluid, forced convection,
more uniform temperature field and weak gravitation
influence thus changing the solidification conditions. The
conventional casting process contributes to numerous defects
which can not be eliminated even with heat treatment as
subsequent process.?) There are also some attempts to obtain
finer and more homogenous microstructure by addition of
some grain refining elements but it revealed as too
complicated and not so efficient.>® The advantage of EMC
reflects in obtaining a better quality of ingots compared to
conventional continuous casting process.”® The obtained
structure is finer and more uniform over the cross section,
segregation of alloying elements and porosity are reduced,
and hence - the mechanical properties are better. Besides, due
to the reduced contact pressure which is the result of
electromagnetic field effect, between the mold and the metal,
the quality of ingot surface is better and there is no need for
additional machine processing. It is very important to get
better quality of as cast ingots as this process becomes more
efficient. There are some published investigations related to
the microstructure and mechanical characterization but very
little attention was given to the final results prediction from
some already achieved experimental data.””'® This modeling
is aimed to establish the possibility of obtaining the better
quality of ingots and shortening the production process
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through the proper combination of the main operating
parameters, frequency (V), field strength (7') and current
intensity (/).

The specific objective in this study was to investigate the
effect of ¥, I and T on mechanical properties: reduction
of area, Sy, tensile strength, Ry, yield strength, R,, and
elongation, A, and the focus was to determine the optimal
mechanical properties, depending on investigated input
variables. In the case of EMC of aluminum alloy manufac-
turing, nonlinear models are founded to be more suitable due
to complexity of casting process. Second order polynomial
(SOP), using Response Surface Methodology (RSM) and
Artificial Neural Network (ANN) models are recognized as a
good modeling tools since they provide the solution to the
problems from a set of experimental data, and are capable of
handling complex systems with nonlinearities and interac-
tions between decision variables.'¥ Developed empirical
models give a reasonable fit to experimental data and
successfully predict mechanical properties and can be used
for control of casting processes.

Optimization algorithm used in this study is concerned
with finding the maxima of objective functions, subject to
constraints.

2. Materials and Methods

The alloy used for experimental casting is EN AW 7075,
heat treatable very high strength alloy with wide application
in aero and military industry. Despite this, it is characterized
by numerous defects occurring during the solidification
process, such as: porosity, hot cracks, non-uniform grain size
and crystal segregation.

The experimental equipment consists of medium fre-
quency induction furnace with capacity of 100kg. There is
a drainpipe, at the bottom of the furnace, with graphite
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Fig. 1 Schematic illustration of the electromagnetic process.

crystallizer that is intensively cooled with water. The low
frequency magnetic field is placed around the crystallizer
itself. The schematic illustration of the electromagnetic
process is shown at the Fig. 1. The testing samples were
taken out of ingots center with a diameter of 90 mm, obtained
by vertical continual casting. The casting temperature was in
the range of 710-720°C and the average casting speed was
1.5mm/s. The main operating parameters: ¥, 7 and / are
combined to obtain and predict the best conditions of EMC.
The operating parameters, during the casting of ingots, were
strictly controlled and for each frequency of 10 Hz, 30 Hz and
50 Hz, the different current value of 200 A, 250 A and 300 A,
and strength of electromagnetic field value of 12000 A,
15000 A, and 18000 A; were combined, respectively. A
series of experiments were done varying influential parame-
ters in order to obtain the full set of data for statistical
analyses. For mechanical characterization, the Zwick/Roell Z
100 device was used. The mechanical properties Sy, Rm, Ry
and 4 were obtained by tensile testing of samples, at room
temperature according to Standard EN 10002-1.

2.1 Statistical analyses

Descriptive statistical analyses for all the obtained results
have been expressed by means = standard deviation (SD), in
three repetitions, for each case of parameters. Collected data
have been subjected to analysis of variance (ANOVA) for
the comparison of means, and significant differences are
calculated according to post-hoc Tukey’s HSD (“honestly
significant differences”) test at p < 0.05 significant level,
95% confidence limit. The SOP models,'>!® were obtained
for independent variables (¥, / and T'), and the factors were
rejected when their significance level was p > 0.05. The SOP
models estimated the main effect of the process variables on
the mechanical properties (So, R, R, and 4) during the EMC
process of 7075 Al alloy. All SOP models were fitted to data
collected by experimental measurements.

The experimental database is randomly divided into three
groups for ANN model developing: training data (60%),
cross-validation (used to test the performance of the network
while training) (20%) and testing data (used to examine the
network generalization capability) (20%). A multi-layer
perceptron model (MLP) consisted of three layers (input,
hidden and output), which is the most common, flexible and
general-purpose kind of ANN was used,'” giving the reason
for choosing it in this study. The MLP neural network learns
using an algorithm called “backpropagation”. Levenberg—

Marquardt algorithm is proved to be the fastest and
particularly adapted for networks of moderate size. During
this iterative process, input data are repeatedly presented to
the network.'® Furthermore, principal component analysis
(PCA) has been applied successfully to classify and
discriminate the different case of parameters. Pattern
recognition technique has been applied within results
descriptors to characterize and differentiate all varieties of
observed cases.'” Each of the statistical analyses has been
performed using StatSoft Statistica 10.0® software.

2.2 Fuzzy synthetic optimization

Optimization procedure was performed using Fuzzy
Synthetic Evaluation (FSE) algorithm,?” implemented in
Microsoft Excel 2007. FSE was implemented, using the
results of models proposed to represent Sy, Ry, R, and 4,
using eq. (1).

Trapezoidal membership function used in this calculation,

could be written as,:20
xX—a
a<x<m,
m—a
Alx,a,m,n,b)y=1 m<x <n, 1 (1)
xX—n
n<x<b>b, 1-—
b—n

where x is whether Sy, Ry, R, and 4, and the values of a, b, m
and n are function parameters. Interval a—b represent the
range in which measured values occurred, while range m-n is
the expected optimal values range for output variables.

3. Results and Discussion

It is known the correlation between the microstructure and
mechanical properties of an alloy.??? When the micro-
structure is more uniform, consequently the mechanical
properties are better. Our previous research shows?>?% that
electromagnetic casting has advantages over the conventional
casting because the solidification process is changed.

The microstructure of samples was examined by optical
microscopy using the image analysis device Leica QS00MC,
after the usual metallographic preparation and etching in
Keller’s reagent (revealing morphology of Al segregation-
solid solution and inter-metallic phase). The all samples were
taken from the ingot center. The Fig. 2 presented the
microstructure of samples obtained with different values of
electromagnetic field frequency. The difference is obvious
especially between the samples obtained with electromag-
netic casting and without it.

Figure 2(a) reveals the typical microstructure of the
conventionally cast EN AW 7075 Al alloy, while Fig. 2(b),
2(c) and 2(d) the microstructure of this alloy cast with
influence of the electromagnetic field (with 10 Hz, 30 Hz and
50Hz respectively). The samples obtained with electro-
magnetic casting process have more cellular and finer
microstructure (especially with a frequency of 30Hz)
compared with dendritic microstructure in the sample
obtained by conventional casting process.

This definitely affects the mechanical properties. There-
fore, our further investigations were directed only to the
electromagnetic casting process and the effect of operating
parameters on the obtained mechanical properties values.
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Fig. 2 Microstructure of sample cross section (a-0Hz), (b-10Hz),
(c-30Hz), (d-50 Hz), Keller’s reagent, 100x.
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Fig. 3 Biplot of mechanical properties (So, Ry, R, and 4) for EN AW 7075
aluminum alloy.

Experimental data obtained were presented using basic
descriptive statistics of obtained data, and post-hoc Tukey’s
HSD test, to represent significant differences between
samples. Variables Sy, Ry, R, and A varied significantly,
imply that fitting of the experimental data could be performed
using SOP or ANN modeling. Calculation of objective
function F has been performed using eq. (1) accounting for
99.66% of the total variability can be considered sufficient
for data representation and the first two principal components
for used assays. Ry, R, and 4 was found most influential for
first factor coordinate calculation, while the S; was the most
important variables for second factor coordinate calculation.
The influence of V" can be observed on Fig. 3, in which the
samples with medium / values (30 Hz) are placed on the left
side of graphic, while other samples (processed at 10 and
50Hz) are located at the right side of graphic. Samples
having the lowest factor 1 coordinate have had the highest
R, R, and 4, and also the highest F" values (samples No 15
and 18, and also 10, 12, 13 and 14). Samples located on the
right side of PCA graph (No 1, 2 and 3) gained lower Ry, R,
and A values, and also the lowest F values.

3.1 Analysis of variance and SOP models
Analysis of variance (ANOVA) was conducted for
obtained SOP models, and outputs were tested against the

Rp

Fig. 4 R, values under different / and V.

impact of input variables. According to ANOVA, responses
So, Rm, R, and A are mostly affected by F, statistically
significant at p < 0.05. T variable was found also very
influential, statistically significant at p < 0.05 and p < 0.10
levels, for these responses, while the impact of / was also
noticed, but far less important. All response variables were
mostly affected by quadratic terms of V, statistically
significant at p < 0.05 level. Linear terms of 7 were also
found statistically significant at p < 0.05 level.

The residual variance, presents the model disagreement
with the experimental values (contributions of other members
that are not described in the SOP model). All developed
models showed statistically insignificant deviation from the
experimental values of the model, which confirmed their
suitability. High 72 values also indicated that the experimental
data satisfactorily coincide with the mathematical models.
A three-dimensional response surface plot was plotted
for experiment data visualization and for the purpose of
observation the fitting of SOP regression models to
experimental data (Fig. 4).

3.2 ANN model

Broyden—Fletcher—Goldfarb—Shanno (BFGS) algorithm,
implemented in StatSoft Statistica’s evaluation routine, was
used for ANN modeling. The optimization procedures to
minimize the error function between network and exper-
imental outputs was used during ANN training cycle,?® and
the sum of squares (SOS) was evaluated according to the
BFGS algorithm, to speed up and stabilize convergence of
the results.”®

The training process was repeated several times in order to
get the best performance of the ANN, due to a high degree of
variability of parameters. It was accepted that the successful
training was achieved when learning and cross-validation
curves (SOS vs. training cycles) approached zero. Coefficient
of determination (#?) and SOS were used as parameters to
check the performance (i.e. the accuracy) of the obtained
ANN.

The optimum number of hidden neurons was chosen upon
minimizing the difference between predicted ANN values
and desired outputs, using SOS during testing as performance
indicator. Used MLP is marked according to StatSoft
Statistica’s notation, “MLP” followed by number of inputs,
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Fig. 5 Experimental measured and ANN model predicted values of R,

number of neurons in the hidden layer, and the number of
outputs. According to ANN performance (sum of r? and
SOSs for all variables in one ANN), it was noticed that the
optimal number of neurons in the hidden layer is 8 (network
MLP 3-8-4, with observed training performance 0.939 and
training error 0.012).

The goodness of fit, between experimental measurements
and model calculated outputs, represented as ANN perform-
ance (sum of 72 between measured and calculated Sy, Ry, R,
and A), during training step were: 0.800; 0.970; 0.992 and
0.992, respectively.

ANN models were used to predict experimental variables
(So, Rm, R, and A). The networks were able to predict
reasonably well all process outputs for a broad range of the
process variables (as seen from Fig. 5, where the exper-
imental measured and ANN model predicted values of R,, is
presented).

The predicted values were very close to the desired values
in most cases, in terms of 7> value, for both SOP and ANN
models. SOS obtained with ANN models are of the same
order of magnitude as experimental errors for Sy, Ry, R, and
A reported in the literature.®

It can be seen that these 7 values for SOP models are very
much alike to those associated with the ANN model. This
agrees with other authors.?® Although ANN model are more
complex (3676 weights-biases for Sy, Ry, R, and A4) than
SOP models, ANN models performed a bit better because of
the high nonlinearity of the developed system.?” The values
r? between experimental and SOP model outputs, for Sy, Ry,
R, and 4, were: 0.531; 0.938; 0.986 and 0.977, respectively,
while the best ANN model (MLP 3-8-4, No 3) gained: 0.800;
0.970; 0.992 and 0.992, respectively, during the training
period.

3.3 Fuzzy synthetic optimization

Fuzzy synthetic optimization of the output variables was
accomplished in order to find the ¥, I, T that give optimums
of So, Rm, Ry, and 4. Trapezoidal membership function was
used, according to eq. (1), in which a—b covered the complete
interval of obtained output values, and m-n represented the
optimal values (Table 1). The optimal parameters, used for
FSE evaluation, were given based on our experience,
calculating m as close, as possible to b.

The objective function (F), eq. (2), is the mathematical
function whose maximum would be determined, by summing

Table 1 Trapezoidal membership function parameters.
Parameter mb;glz N rﬁrnrll’z N n’i"lrz :;0
a 49.88 321.56 235.72 3.01
b 50.49 405.75 302.53 6.86
m 50.46 385.46 287.40 6.51
n 50.49 405.75 302.53 6.86
Table 2 Optimizing parameters.
Optimal inputs
v I T (x1073)
Hz A At
30 250 18
Optimal outputs
So R R, A
mm? Nmm~ Nmm~2 %
50.49 405.75 302.49 6.86

the FSE results, according to eq. (2). Each input parameter
(V,1,T) has the equal influence on the function F:

F(V,I,T)=Sy+Rn+ R, + A 2)

The maximum of function F represents the optimal V, I, T,
and also the optimum of Sy, R, R, and 4. The values of
F were determined using eq. (1). Values of membership
function closer to 1 show the tendency of processing
parameters to be optimal. Optimized process parameters
(inputs and outputs) for all groups were shown in Table 2.

4. Conclusion

The electromagnetic casting process has more advantages
than the conventional casting, but the efficiency of the
process depends on operating parameters. It is known that by
combining the operating parameters it is possible to obtain
good quality of as cast ingots. This is very important because
of lowering energy consumption and saving time. There is
only one question: “Which combination of operating pa-
rameters is the best?” Through the SOP and ANN based
mathematical models it is possible to obtain the answer, so
this work presents the further step and a new approach in
improving the electromagnetic casting process. SOP and
ANN based models were developed for prediction of Sy, Ry,
R, and 4 for a wide range of experimental conditions. Models
were able to predict successfully experimental data, with ease
of implementing it for design and control of the processes
and also the effective use for predictive modeling and
optimization. SOP models yield quite good fit of exper-
imental data, according to 72. As compared to SOP models,
ANN models yield a bit better fit of experimental data,
according to 2 and SOS of both models. Taking into account
that a considerable amount and wide variety of data were
used in the present work to obtain the SOP models, and
considering that the model turned out to yield a sufficiently
good representation of these data, these models can be
expected to be very useful in practice for the design and
control the EMC process of 7075 Al alloy.
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